
1

Asymptotics

2

EXAMPLE: INSERTION-SORT

3

In-place Algorithm
A sorting algorithm sorts in-place if only a constant number of elements
of the input array are ever stored outside the array.

4

Correctness

Invariant (Loop Invariant)

At the start of each iteration of the for loop (lines 1-8), the
sub-array A[1...i-1] is sorted.

5

Correctness

We use Loop Invariant to show correctness.

Invariant (Loop Invariant)

At the start of each iteration of the for loop (lines 1-8), the
sub-array A[1...i-1] is sorted.

6

Loop Invariant (3 aspects)
 Initialization

 It is true prior to the first iteration of the loop.

 Maintenance



 Termination



7

Loop Invariant (3 aspects)
 Initialization

 It is true prior to the first iteration of the loop.

 Maintenance

 If it is true before an iteration of the loop, it remains true before the
next iteration.

 Termination



8

Loop Invariant (3 aspects)
 Initialization

 It is true prior to the first iteration of the loop.

 Maintenance

 If it is true before an iteration of the loop, it remains true before the
next iteration.

 Termination

 When the loop terminates, the invariant gives us a useful property
that helps show that the algorithm is correct.

9

Loop Invariant (3 aspects)
 Initialization

 It is true prior to the first iteration of the loop.



10

Loop Invariant (3 aspects)
 Initialization

 It is true prior to the first iteration of the loop.

 Consists of A[1]

11

Loop Invariant (3 aspects)
 Maintenance

 If it is true before an iteration of the loop, it remains true before the next
iteration.

 the body of the for loop works by



12

Loop Invariant (3 aspects)
 Maintenance

 If it is true before an iteration of the loop, it remains true before the next
iteration.

 the body of the for loop works by

 moving A[i-1], A[i-2], and so on, one position to its right, until it finds the
proper position for A[i] (lines 4–7),



13

Loop Invariant (3 aspects)
 Maintenance

 If it is true before an iteration of the loop, it remains true before the next
iteration.

 the body of the for loop works by

 moving A[i-1], A[i-2], and so on, one position to its right, until it finds the
proper position for A[i] (lines 4–7),

 The subarray A[1..i] then consists of the elements originally in A[1..i] but in
sorted order.

 i=i+1 for the next iteration of the “for” loop preserves the loop invariant.

14

Loop Invariant (3 aspects)
 Termination

 When the loop terminates, the invariant gives us a useful property
that helps show that the algorithm is correct.



Invariant (Loop Invariant)

At the start of each iteration of the for loop of lines 1-8, the
sub-array A[1...i-1] is sorted.

15

Loop Invariant (3 aspects)
 Termination

 When the loop terminates, the invariant gives us a useful property
that helps show that the algorithm is correct.

 The condition causing the for loop to terminate is that i = n+1.

Invariant (Loop Invariant)

At the start of each iteration of the for loop of lines 1-8, the
sub-array A[1...i-1] is sorted.

Analyzing time complexity

16

Exercise: For each function f(n) and time t in the following table, determine the largest size n of a problem
that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

1 second
(10^6 us)

1 minute
(6*10^7 us)

1 hour
(3.6 * 10^9 us)

1 day
(8.64*10^9 us)

log n

n

n log n

n^2

n^3

2^n

n!

Analyzing time complexity

17

Exercise: For each function f(n) and time t in the following table, determine the largest size n of a problem
that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

1 second
(10^6 us)

1 minute
(6*10^7 us)

1 hour
(3.6 * 10^9 us)

1 day
(8.64*10^9 us)

log n 210^6

n

n log n

n^2

n^3

2^n

n!

Analyzing time complexity

18

Exercise: For each function f(n) and time t in the following table, determine the largest size n of a problem
that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

1 second
(10^6 us)

1 minute
(6*10^7 us)

1 hour
(3.6 * 10^9 us)

1 day
(8.64*10^9 us)

log n 210^6

n 106

n log n ~ 62,746

n^2 ~ 1,000

n^3 ~100

2^n ~19

n! ~9

Analyzing time complexity

19

Exercise: For each function f(n) and time t in the following table, determine the largest size n of a problem
that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

1 second
(10^6 us)

1 minute
(6*10^7 us)

1 hour
(3.6 * 10^9 us)

1 day
(8.64*10^9 us)

log n 210^6 28.64*10^9

n 106

n log n ~62,746

n^2 ~1,000

n^3 ~100

2^n ~19 ~36

n! ~9 ~16

20

Asymptotics
 Refers to the behavior of mathematical functions, algorithms, or

models as inputs become large.

 Describes the efficiency of algorithms.
This tells you how algorithms scale as the problem size increases.

21

Functions


n2

n2 log n

n2 log nn2

n log n

n log n

22

O-notation

23

O-notation characterizes an upper bound on the asympototic behavior
of a function: it says that a function grows no faster than a certain
rate. This rate is based on the highest order term.

For example:

100n2 + 1000n +50 is O(?),

What is the highest order term?

O-notation

24

O-notation characterizes an upper bound on the asympototic behavior
of a function: it says that a function grows no faster than a certain
rate. This rate is based on the highest order term.

For example:

100n2 + 1000n +50 is O(n2), since the highest order term is 100n2, and
therefore the function grows no faster than n2.

O-notation

25

O-notation characterizes an upper bound on the asympototic behavior
of a function: it says that a function grows no faster than a certain
rate. This rate is based on the highest order term.

For example:

100n2 + 1000n +50 is O(n2), since the highest order term is 100n2, and
therefore the function grows no faster than n2.

O-notation

Question: 100n2 + 1000n +50 is O(n3)?

26

O-notation characterizes an upper bound on the asympototic behavior
of a function: it says that a function grows no faster than a certain
rate. This rate is based on the highest order term.

For example:

100n2 + 1000n +50 is O(n2), since the highest order term is 100n2, and
therefore the function grows no faster than n2.

O-notation

Question: 100n2 + 1000n +50 is O(n3)?

In terms of
algorithms?

27

O-notation

28

Is 2n2=O(n3)?

O-notation

29

O-notation

30

ꭥ-notation

31

-notation characterizes a ꭥ lower bound on the asymptotic behavior of a
function.

For example:

100n2 + 1000n +50 is ꭥ(?), since the highest order term is 100n2, and it
grows at least as fast as ?.

ꭥ-notation

32

-notation characterizes a ꭥ lower bound on the asymptotic behavior of a
function.

For example:

100n2 + 1000n +50 is ꭥ(n2), since the highest order term is 100n2, and it
grows at least as fast as n2.

ꭥ-notation

Question: 100n2 + 1000n +50 is ꭥ(n)?

33

ꭥ-notation

34

ꭥ-notation

35

ꭥ-notation

Is 2n2=Ω(n3)?

36

ꭥ-notation

37

Θ-notation characterizes a tight bound on the asympototic behavior of a
function: it says that a function grows precisely at a certain rate, again
based on the highest-order term.

If a function is both O(g(n)) and (g(n)), then a function is ꭥ Θ(g(n)).

Θ-notation

38

Θ-notation

39

Θ-notation

Is n2/2 - 3n=Θ(n3)?

40

Θ-notation

Is n2/2 - 2n=Θ(n2)?

41

Θ-notation

Is n2/2 - 2n=Θ(n2)?

42

Important points

43

f(n)= 100n2, g(n)=n2;

 Both are O(n2) (in asymptotic analysis).
 When analyzing algorithms or functions for large inputs, we care more

about how fast something grows rather than the exact value.
 The shape of the growth (quadratic) dominates, not the size of the

constant.

Impotant points (constants)

Constants do not matter!!!

44

f(n)= 3n, g(n)=100n;

 Both grow linearly (O(n)), even though one is faster in practice. As
n→∞, they behave similarly in shape, so the constant difference
becomes less meaningful.

Impotant points (constants)

Constants do not matter!!!

45

f(n)= 100n, g(n)=n2;

 Even though f(n)​ is worse for small n, it scales much better than g(n)
as n increases.

 So, we say f(n)=O(n), g(n)=O(n2), which shows f(n)​ is asymptotically
better.

Impotant points (constants)

Removing constants allows for easier comparison between
algorithms.

46

f(n)≤ 4n+12 log n +57;

 We simplify to f(n)=O(n)
 Constants clutter notation without adding insight in asymptotic

contexts.

Impotant points (constants)

This keeps the analysis clear and general.

ASMPTOTIC NOTATION IN EQUATIONS
When on right-hand side:

 stands for some anonymous function in the set .

When on left-hand side:

No matter how the anonymous functions are chosen on the left-hand
side, there is a way to choose the anonymous functions on the right-
hand side to make the equation valid.

47

ASMPTOTIC NOTATION IN EQUATIONS
(continued)

Can chain together:

Interpretation:

48

CHAPTER 3 OVERVIEW
Goals
• A way to describe behavior of functions in the limit. We’re studying

asymptotic efficiency.
• Describe growth of functions.
• Focus on what’s important by abstracting away low-order terms and

constant factors.
• How we indicate running times of algorithms.
• A way to compare “sizes” of functions:

49

	Asymptotics
	EXAMPLE: INSERTION-SORT
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Analyzing time complexity
	Analyzing time complexity (2)
	Analyzing time complexity (3)
	Analyzing time complexity (4)
	Slide 20
	Slide 21
	Slide 22
	O-notation
	O-notation (2)
	O-notation (3)
	O-notation (4)
	O-notation (5)
	O-notation (6)
	O-notation (7)
	Slide 30
	ꭥ-notation
	ꭥ-notation (2)
	ꭥ-notation (3)
	ꭥ-notation (4)
	ꭥ-notation (5)
	ꭥ-notation (6)
	Θ-notation
	Θ-notation (2)
	Θ-notation (3)
	Θ-notation (4)
	Θ-notation (5)
	Slide 42
	Impotant points (constants)
	Impotant points (constants) (2)
	Impotant points (constants) (3)
	Impotant points (constants) (4)
	ASMPTOTIC NOTATION IN EQUATIONS
	ASMPTOTIC NOTATION IN EQUATIONS (continued)
	CHAPTER 3 OVERVIEW

