Asymptotics

EXAMPLE: INSERTION-SORT

```
INSERTION-SORT (A, n)
  for i = 2 to n
       key = A[i]
       // Insert A[i] into the sorted subarray A[1:i-1].
      j = i - 1
       while j > 0 and A[j] > key
           A[j+1] = A[j]
           j = j - 1
       A[j+1] = key
```

In-place Algorithm

A sorting algorithm sorts **in-place** if only a constant number of elements of the input array are ever stored outside the array.

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1:i-1].

4 j = i - 1

5 while j > 0 and A[j] > key

6 A[j+1] = A[j]

7 j = j - 1

8 A[j+1] = key
```

Correctness

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1:i-1].

4 j = i-1

5 while j > 0 and A[j] > key

6 A[j+1] = A[j]

7 j = j-1

8 A[j+1] = key
```

Invariant (Loop Invariant)

At the start of each iteration of the for loop (lines 1-8), the sub-array A[1...i-1] is sorted.

Correctness

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1:i-1].

4 j = i-1

5 while j > 0 and A[j] > key

6 A[j+1] = A[j]

7 j = j-1

8 A[j+1] = key
```

Invariant (Loop Invariant)

At the start of each iteration of the for loop (lines 1-8), the sub-array A[1...i-1] is sorted.

We use **Loop Invariant** to show correctness.

- Initialization
 - It is true prior to the first iteration of the loop.
- Maintenance

Termination

✓

- Initialization
 - It is true prior to the first iteration of the loop.
- Maintenance
 - If it is true before an iteration of the loop, it remains true before the next iteration.
- Termination

✓

Initialization

It is true prior to the first iteration of the loop.

Maintenance

If it is true before an iteration of the loop, it remains true before the next iteration.

Termination

Y When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

Initialization

×

It is true prior to the first iteration of the loop.

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1:i-1].

4 j = i-1

5 while j > 0 and A[j] > key

6 A[j+1] = A[j]

7 j = j-1

8 A[j+1] = key
```

- Initialization
 - It is true prior to the first iteration of the loop.
- Consists of A[1]

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2  key = A[i]

3  // Insert A[i] into the sorted subarray A[1:i-1].

4  j = i-1

5  while j > 0 and A[j] > key

6  A[j+1] = A[j]

7  j = j-1

8  A[j+1] = key
```

Maintenance

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1:i-1].

4 j = i - 1

5 while j > 0 and A[j] > key

6 A[j+1] = A[j]

7 j = j - 1

8 A[j+1] = key
```

- If it is true before an iteration of the loop, it remains true before the next iteration.
- * the body of the for loop works by

X

Maintenance

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2  key = A[i]

3  // Insert A[i] into the sorted subarray A[1:i-1].

4  j = i - 1

5  while j > 0 and A[j] > key

6  A[j+1] = A[j]

7  j = j-1

8  A[j+1] = key
```

- If it is true before an iteration of the loop, it remains true before the next iteration.
- * the body of the for loop works by
 - * moving A[i-1], A[i-2], and so on, one position to its right, until it finds the proper position for A[i] (lines 4–7),

X

Maintenance

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2  key = A[i]

3  // Insert A[i] into the sorted subarray A[1:i-1].

4  j = i - 1

5  while j > 0 and A[j] > key

6  A[j+1] = A[j]

7  j = j - 1

8  A[j+1] = key
```

- If it is true before an iteration of the loop, it remains true before the next iteration.
- * the body of the for loop works by
 - * moving A[i-1], A[i-2], and so on, one position to its right, until it finds the proper position for A[i] (lines 4–7),
- * The subarray A[1..i] then consists of the elements originally in A[1..i] but in sorted order.
- * i=i+1 for the next iteration of the "for" loop preserves the loop invariant.

Termination

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1:i-1].

4 j = i - 1

5 while j > 0 and A[j] > key

6 A[j+1] = A[j]

7 j = j - 1

8 A[j+1] = key
```

When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.

X

Invariant (Loop Invariant)

At the start of each iteration of the for loop of lines 1-8, the sub-array A[1...i-1] is sorted.

Termination

```
INSERTION-SORT (A, n)

1 for i = 2 to n

2 key = A[i]

3 // Insert A[i] into the sorted subarray A[1:i-1].

4 j = i-1

5 while j > 0 and A[j] > key

6 A[j+1] = A[j]

7 j = j-1

8 A[j+1] = key
```

- When the loop terminates, the invariant gives us a useful property that helps show that the algorithm is correct.
- * The condition causing the for loop to terminate is that i = n+1.

Invariant (Loop Invariant)

At the start of each iteration of the for loop of lines 1-8, the sub-array A[1...i-1] is sorted.

	1 second (10^6 us)	1 minute (6*10^7 us)	1 hour (3.6 * 10^9 us)	1 day (8.64*10^9 us)
log n				
n				
n log n				
n^2				
n^3				
2^n				
n!				

	1 second (10^6 us)	1 minute (6*10^7 us)	1 hour (3.6 * 10^9 us)	1 day (8.64*10^9 us)
log n	210^6			
n				
n log n				
n^2				
n^3				
2^n				
n!				

	1 second (10^6 us)	1 minute (6*10^7 us)	1 hour (3.6 * 10^9 us)	1 day (8.64*10^9 us)
log n	2 ^{10^6}			
n	10 ⁶			
n log n	~ 62,746			
n^2	~ 1,000			
n^3	~100			
2^n	~19			
n!	~9			

	1 second (10^6 us)	1 minute (6*10^7 us)	1 hour (3.6 * 10^9 us)	1 day (8.64*10^9 us)
log n	2 ¹⁰ 6			2 ^{8.64*10^9}
n	10 ⁶			
n log n	~62,746			
n^2	~1,000			
n^3	~100			
2^n	~19			~ 36
n!	~9			~16

Asymptotics

- Refers to the behavior of mathematical functions, algorithms, or models as inputs become large.
- Describes the efficiency of algorithms.

This tells you how algorithms scale as the problem size increases.

Functions

•

n log n n²

 $n^2 \log n$ $n \log n$

 n^2 $n^2 \log n$

O-notation characterizes an *upper bound* on the asymptotic behavior of a function: it says that a function grows *no faster* than a certain rate. This rate is based on the highest order term.

For example:

 $100n^2 + 1000n + 50$ is O(?),

What is the highest order term?

O-notation characterizes an *upper bound* on the asymptototic behavior of a function: it says that a function grows *no faster* than a certain rate. This rate is based on the highest order term.

For example:

 $100n^2 + 1000n + 50$ is $O(n^2)$, since the highest order term is $100n^2$, and therefore the function grows no faster than n^2 .

O-notation characterizes an *upper bound* on the asymptototic behavior of a function: it says that a function grows *no faster* than a certain rate. This rate is based on the highest order term.

For example:

 $100n^2 + 1000n + 50$ is $O(n^2)$, since the highest order term is $100n^2$, and therefore the function grows no faster than n^2 .

Question: $100n^2 + 1000n + 50$ is $O(n^3)$?

O-notation characterizes an *upper bound* on the asymptototic behavior of a function: it says that a function grows *no faster* than a certain rate. This rate is based on the highest order term.

For example:

 $100n^2 + 1000n + 50$ is $O(n^2)$, since the highest order term is $100n^2$, and therefore the function grows no faster than n^2 .

Question: $100n^2 + 1000n + 50$ is $O(n^3)$?

In terms of algorithms?

 $O(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic upper bound* for f(n).

If $f(n) \in O(g(n))$, we write f(n) = O(g(n))

Is
$$2n^2 = O(n^3)$$
?

Example

```
2n^2 = O(n^3), with c = 1 and n_0 = 2.
Examples of functions in O(n^2):
```

```
1000n^2 + 1000n
Also,
```

 Ω -notation characterizes a *lower bound* on the asymptotic behavior of a function.

For example:

 $100n^2 + 1000n + 50$ is Ω (?), since the highest order term is $100n^2$, and it grows at least as fast as ?.

 Ω -notation characterizes a *lower bound* on the asymptotic behavior of a function.

For example:

 $100n^2 + 1000n + 50$ is $\Omega(n^2)$, since the highest order term is $100n^2$, and it grows at least as fast as n^2 .

Question: $100n^2 + 1000n + 50$ is $\Omega(n)$?

Ω-notation

 $\Omega(g(n)) = \{f(n) : \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$.

g(n) is an *asymptotic lower bound* for f(n).

Ω-notation

Is
$$2n^2 = \Omega(n^3)$$
?

Ω-notation

Example

 $\sqrt{n} = \Omega(\lg n)$, with c = 1 and $n_0 = 16$. Examples of functions in $\Omega(n^2)$:

$$n^{2}$$
 $n^{2} + n$
 $n^{2} - n$
 $1000n^{2} + 1000n$
 $1000n^{2} - 1000n$
Also,
 n^{3}
 $n^{2.00001}$
 $n^{2} \lg \lg \lg n$
 $2^{2^{n}}$

 Θ -notation characterizes a *tight bound* on the asymptototic behavior of a function: it says that a function grows *precisely* at a certain rate, again based on the highest-order term.

If a function is both O(g(n)) and $\Omega(g(n))$, then a function is $\Theta(g(n))$.

Θ -notation

 $\Theta(g(n)) = \{f(n) : \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.

g(n) is an asymptotically tight bound for f(n).

Is
$$n^2/2 - 3n = \Theta(n^3)$$
?

Is
$$n^2/2 - 2n = \Theta(n^2)$$
?

Is
$$n^2/2 - 2n = \Theta(n^2)$$
?

Example

$$n^2/2 - 2n = \Theta(n^2)$$
, with $c_1 = 1/4$, $c_2 = 1/2$, and $n_0 = 8$.

Theorem

$$f(n) = \Theta(g(n))$$
 if and only if $f = O(g(n))$ and $f = \Omega(g(n))$.

Leading constants and low-order terms don't matter.

Important points

$$f(n)=100n^2, g(n)=n^2;$$

- Both are O(n²) (in asymptotic analysis).
- When analyzing algorithms or functions for large inputs, we care more about how fast something grows rather than the exact value.
- The shape of the growth (quadratic) dominates, not the size of the constant.

Constants do not matter!!!

$$f(n) = 3n, g(n) = 100n;$$

• Both grow linearly (O(n)), even though one is faster in practice. As $n \to \infty$, they behave similarly in shape, so the constant difference becomes less meaningful.

Constants do not matter!!!

$$f(n)=100n, g(n)=n^2;$$

- Even though f(n) is worse for small n, it scales much better than g(n) as n increases.
- So, we say f(n)=O(n), $g(n)=O(n^2)$, which shows f(n) is asymptotically better.

Removing constants allows for easier comparison between algorithms.

$$f(n) \le 4n + 12 \log n + 57;$$

- We simplify to f(n)=O(n)
- Constants clutter notation without adding insight in asymptotic contexts.

This keeps the analysis clear and general.

ASMPTOTIC NOTATION IN EQUATIONS

When on right-hand side:

stands for some anonymous function in the set.

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$
 means $2n^2 + 3n + 1 = 2n^2 + f(n)$ for some $f(n) \in \Theta(n)$. In particular, $f(n) = 3n + 1$.

When on left-hand side:

No matter how the anonymous functions are chosen on the left-hand side, there is a way to choose the anonymous functions on the right-hand side to make the equation valid.

Interpret $2n^2 + \Theta(n) = \Theta(n^2)$ as meaning for all functions $f(n) \in \Theta(n)$, there exists a function $g(n) \in \Theta(n^2)$ such that $2n^2 + f(n) = g(n)$.

ASMPTOTIC NOTATION IN EQUATIONS

(continued)

Can chain together:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

= $\Theta(n^2)$.

Interpretation:

- First equation: There exists $f(n) \in \Theta(n)$ such that $2n^2 + 3n + 1 = 2n^2 + f(n)$.
- Second equation: For all $g(n) \in \Theta(n)$ (such as the f(n) used to make the first equation hold), there exists $h(n) \in \Theta(n^2)$ such that $2n^2 + g(n) = h(n)$.

CHAPTER 3 OVERVIEW

Goals

- A way to describe behavior of functions in the limit. We're studying asymptotic efficiency.
- Describe growth of functions.
- Focus on what's important by abstracting away low-order terms and constant factors.
- How we indicate running times of algorithms.
- A way to compare "sizes" of functions:

$$O \approx \leq$$

$$\Omega \approx \geq$$

$$\Theta \approx =$$

$$o \approx <$$

$$\omega \approx >$$