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Asymptotics
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EXAMPLE: INSERTION-SORT
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In-place Algorithm
A sorting algorithm sorts in-place if only a constant number of elements 
of the input array are ever stored outside the array. 
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Correctness

Invariant (Loop Invariant)

At the start of each iteration of the for loop (lines 1-8), the 
sub-array A[1...i-1] is sorted. 
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Correctness

We use Loop Invariant to show correctness. 

Invariant (Loop Invariant)

At the start of each iteration of the for loop (lines 1-8), the 
sub-array A[1...i-1] is sorted. 
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Loop Invariant (3 aspects)
 Initialization

 It is true prior to the first iteration of the loop.

 Maintenance

  

 Termination

  
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Loop Invariant (3 aspects)
 Initialization

 It is true prior to the first iteration of the loop.

 Maintenance

 If it is true before an iteration of the loop, it remains true before the 
next iteration.

 Termination

  



8

Loop Invariant (3 aspects)
 Initialization

 It is true prior to the first iteration of the loop.

 Maintenance

 If it is true before an iteration of the loop, it remains true before the 
next iteration.

 Termination

 When the loop terminates, the invariant gives us a useful property 
that helps show that the algorithm is correct.
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Loop Invariant (3 aspects)
 Initialization

 It is true prior to the first iteration of the loop.

  
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Loop Invariant (3 aspects)
 Initialization

 It is true prior to the first iteration of the loop.

 Consists of A[1]
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Loop Invariant (3 aspects)
 Maintenance

 If it is true before an iteration of the loop, it remains true before the next 
iteration.

 the body of the for loop works by 

  
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Loop Invariant (3 aspects)
 Maintenance

 If it is true before an iteration of the loop, it remains true before the next 
iteration.

 the body of the for loop works by 

 moving A[i-1], A[i-2], and so on, one position to its right, until it finds the 
proper position for A[i] (lines 4–7),

  
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Loop Invariant (3 aspects)
 Maintenance

 If it is true before an iteration of the loop, it remains true before the next 
iteration.

 the body of the for loop works by 

 moving A[i-1], A[i-2], and so on, one position to its right, until it finds the 
proper position for A[i] (lines 4–7),

 The subarray A[1..i] then consists of the elements originally in A[1..i] but in 
sorted order. 

 i=i+1 for the next iteration of the “for” loop preserves the loop invariant. 
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Loop Invariant (3 aspects)
 Termination

 When the loop terminates, the invariant gives us a useful property 
that helps show that the algorithm is correct. 

  

Invariant (Loop Invariant)

At the start of each iteration of the for loop of lines 1-8, the 
sub-array A[1...i-1] is sorted. 
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Loop Invariant (3 aspects)
 Termination

 When the loop terminates, the invariant gives us a useful property 
that helps show that the algorithm is correct. 

 The condition causing the for loop to terminate is that i = n+1.

Invariant (Loop Invariant)

At the start of each iteration of the for loop of lines 1-8, the 
sub-array A[1...i-1] is sorted. 



Analyzing time complexity
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Exercise: For each function f(n) and time t in the following table, determine the largest size n of a problem 
that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

1 second
(10^6 us)

1 minute 
(6*10^7 us)

1 hour 
(3.6 * 10^9 us)

1 day
(8.64*10^9 us)

log n

n

n log n

n^2

n^3

2^n

n!
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Exercise: For each function f(n) and time t in the following table, determine the largest size n of a problem 
that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

1 second
(10^6 us)

1 minute 
(6*10^7 us)

1 hour 
(3.6 * 10^9 us)

1 day
(8.64*10^9 us)

log n 210^6

n

n log n

n^2

n^3

2^n

n!



Analyzing time complexity
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Exercise: For each function f(n) and time t in the following table, determine the largest size n of a problem 
that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

1 second
(10^6 us)

1 minute 
(6*10^7 us)

1 hour 
(3.6 * 10^9 us)

1 day
(8.64*10^9 us)

log n 210^6

n 106

n log n ~ 62,746

n^2 ~ 1,000

n^3 ~100

2^n ~19

n! ~9



Analyzing time complexity

19

Exercise: For each function f(n) and time t in the following table, determine the largest size n of a problem 
that can be solved in time t, assuming that the algorithm to solve the problem takes f(n) microseconds.

1 second
(10^6 us)

1 minute 
(6*10^7 us)

1 hour 
(3.6 * 10^9 us)

1 day
(8.64*10^9 us)

log n 210^6 28.64*10^9

n 106

n log n ~62,746

n^2 ~1,000

n^3 ~100

2^n ~19 ~36

n! ~9 ~16
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Asymptotics
 Refers to the behavior of mathematical functions, algorithms, or 

models as inputs become large. 

 Describes the efficiency of algorithms. 
This tells you how algorithms scale as the problem size increases.
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Functions


n2

n2 log n

n2 log nn2

n log n

n log n
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O-notation
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O-notation characterizes an upper bound on the asympototic behavior 
of a function: it says that a function grows no faster than a certain 
rate. This rate is based on the highest order term.

For example:

100n2 + 1000n +50 is O(?), 

What is the highest order term? 

O-notation
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O-notation characterizes an upper bound on the asympototic behavior 
of a function: it says that a function grows no faster than a certain 
rate. This rate is based on the highest order term.

For example:

100n2 + 1000n +50 is O(n2), since the highest order term is 100n2, and 
therefore the function grows no faster than n2.

O-notation
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O-notation characterizes an upper bound on the asympototic behavior 
of a function: it says that a function grows no faster than a certain 
rate. This rate is based on the highest order term.

For example:

100n2 + 1000n +50 is O(n2), since the highest order term is 100n2, and 
therefore the function grows no faster than n2.

O-notation

Question: 100n2 + 1000n +50 is O(n3)?
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O-notation characterizes an upper bound on the asympototic behavior 
of a function: it says that a function grows no faster than a certain 
rate. This rate is based on the highest order term.

For example:

100n2 + 1000n +50 is O(n2), since the highest order term is 100n2, and 
therefore the function grows no faster than n2.

O-notation

Question: 100n2 + 1000n +50 is O(n3)?

In terms of 
algorithms?
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O-notation
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Is 2n2=O(n3)? 

O-notation
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O-notation
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ꭥ-notation
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-notation characterizes a ꭥ lower bound on the asymptotic behavior of a 
function.

For example:

100n2 + 1000n +50 is ꭥ(?), since the highest order term is 100n2, and it 
grows at least as fast as ?. 

ꭥ-notation
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-notation characterizes a ꭥ lower bound on the asymptotic behavior of a 
function.

For example:

100n2 + 1000n +50 is ꭥ(n2), since the highest order term is 100n2, and it 
grows at least as fast as n2. 

ꭥ-notation

Question: 100n2 + 1000n +50 is ꭥ(n)?
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ꭥ-notation
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ꭥ-notation
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ꭥ-notation

Is 2n2=Ω(n3)? 
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ꭥ-notation
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Θ-notation characterizes a tight bound on the asympototic behavior of a 
function: it says that a function grows precisely at a certain rate, again 
based on the highest-order term.

If a function is both O(g(n)) and (g(n)), then a function is ꭥ Θ(g(n)).

Θ-notation
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Θ-notation
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Θ-notation

Is n2/2 - 3n=Θ(n3)? 
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Θ-notation

Is n2/2 - 2n=Θ(n2)? 
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Θ-notation

Is n2/2 - 2n=Θ(n2)? 
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Important points



43

f(n)= 100n2, g(n)=n2; 

 Both are O(n2) (in asymptotic analysis). 
 When analyzing algorithms or functions for large inputs, we care more 

about how fast something grows rather than the exact value. 
 The shape of the growth (quadratic) dominates, not the size of the 

constant. 

Impotant points (constants)

Constants do not matter!!!
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f(n)= 3n, g(n)=100n; 

 Both grow linearly (O(n)), even though one is faster in practice. As 
n→∞, they behave similarly in shape, so the constant difference 
becomes less meaningful.

Impotant points (constants)

Constants do not matter!!!
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f(n)= 100n, g(n)=n2; 

 Even though f(n)​ is worse for small n, it scales much better than g(n) 
as n increases.

 So, we say f(n)=O(n), g(n)=O(n2), which shows f(n)​ is asymptotically 
better. 

Impotant points (constants)

Removing constants allows for easier comparison between 
algorithms.
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f(n)≤ 4n+12 log n +57; 

 We simplify to f(n)=O(n)
 Constants clutter notation without adding insight in asymptotic 

contexts.

Impotant points (constants)

This keeps the analysis clear and general.



ASMPTOTIC NOTATION IN EQUATIONS
When on right-hand side: 

 stands for some anonymous function in the set .

When on left-hand side:

No matter how the anonymous functions are chosen on the left-hand 
side, there is a way to choose the anonymous functions on the right-
hand side to make the equation valid.
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ASMPTOTIC NOTATION IN EQUATIONS 
(continued)

Can chain together: 

Interpretation:

48



CHAPTER 3 OVERVIEW
Goals
• A way to describe behavior of functions in the limit. We’re studying 

asymptotic efficiency.
• Describe growth of functions.
• Focus on what’s important by abstracting away low-order terms and 

constant factors.
• How we indicate running times of algorithms.
• A way to compare “sizes” of functions:

49
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